
WATCHCONNECT: A Toolkit for Prototyping  
Smartwatch-Centric Cross-Device Applications 

Steven Houben 1,2 
1 Pervasive Interaction Technology Laboratory 

IT University of Copenhagen 

Rued Langgaardsvej 7, Copenhagen, DK 

s.houben@ucl.ac.uk 

Nicolai Marquardt 2 
2 University College London 

UCL Interaction Centre / ICRI Cities 

Gower Street, London, UK 

n.marquardt@ucl.ac.uk 

ABSTRACT 

People increasingly use smartwatches in tandem with other 

devices such as smartphones, laptops or tablets. This allows 

for novel cross-device applications that use the watch as both 

input device and output display. However, despite the in-

creasing availability of smartwatches, prototyping cross-de-

vice watch-centric applications remains a challenging task. 

Developers are limited in the applications they can explore 

as available toolkits provide only limited access to different 

types of input sensors for cross-device interactions. To ad-

dress this problem, we introduce WatchConnect, a toolkit for 

rapidly prototyping cross-device applications and interaction 

techniques with smartwatches. The toolkit provides develop-

ers with (i) an extendable hardware platform that emulates a 

smartwatch, (ii) a UI framework that integrates with an ex-

isting UI builder, and (iii) a rich set of input and output events 

using a range of built-in sensor mappings. We demonstrate 

the versatility and design space of the toolkit with five inter-

action techniques and applications. 

Author Keywords 

Smartwatch; Toolkit; Cross-Device Interaction; Rapid Pro-

totyping; Gestural Interaction; Interface Design 

ACM Classification Keywords 

H.5.2. Information Interfaces. User Interfaces – input de-

vices and strategies, prototyping. 

INTRODUCTION 

Smartwatches give people lightweight and immediate access 

to messages, notifications, and other digital data while on the 

go. While already powerful as standalone devices, the capa-

bilities of smartwatches increase significantly when used in 

tandem with other devices that people carry, such as their 

phones or tablets, which allows for novel cross-device inter-

action techniques (e.g. [7,24]). However, so far there are only 

a relatively small number of explorations into watch-centric, 

cross-device interaction techniques. Building and exploring 

cross-device interaction techniques and applications is a dif-

ficult task, as most existing development kits have only lim-

ited support for input gesture recognition, different sensor 

hardware configurations, rapid interface designs, or cross-

device connectivity and transfer of information.  

To bridge the gap between concept design and full imple-

mentation, we introduce WatchConnect, a rapid prototyping 

toolkit for watch-centric cross-device interaction techniques 

and applications (Figure 1). The toolkit provides (i) a modu-

lar and extendable hardware platform that emulates a smart-

watch, (ii) a runtime system and user interface components 

that support quick prototyping of watch interfaces using an 

existing UI framework, and (iii) a rich set of input and output 

events and gestures using a range of built-in sensor mappings 

and simulators. The contribution of this paper is a novel ap-

proach for rapidly prototyping and designing smartwatch-

centric cross-device applications and interaction techniques, 

using simulated hardware and software building blocks. 

In this paper we first sample key related work and introduce 

the design of the WatchConnect toolkit. We proceed with the 

details of the architecture and components of the toolkit. 

Next, we demonstrate the versatility and generality of the 

toolkit by implementing five applications using only the 

basic building blocks of the toolkit. We conclude this paper 

with a discussion and reflection on the design and features of 

the toolkit, compared to other approaches. 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. Copyrights for components of this work owned by others than ACM 

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 

to post on servers or to redistribute to lists, requires prior specific permission and/or a 

fee. Request permissions from Permissions@acm.org 

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea  

Copyright is held by the owner/author(s). Publication rights licensed to ACM. 

ACM 978-1-4503-3145-6/15/04…$15.00  

http://dx.doi.org/10.1145/2702123.2702215 

 

.  

 

 
Figure 1. WatchConnect toolkit consists of (a) wired prototyp-

ing smartwatches with sensors through a (b) flexible and ex-

tendable hardware layer, (c) a software development platform 

providing user interface components and a rich set of input 

and output events and gestures, facilitating (d) cross-device in-

teractions with (e) other interactive surfaces. 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1247

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2702123.2702215


RELATED WORK 

WatchConnect builds on work on interaction techniques for 

smartwatches, cross-device setups, and toolkit designs. 

Smartwatch Interactions 

Most smartwatches allow for touch input. Ashbrook et al. [1] 

explored interaction techniques for round touch-enabled 

watch faces. Facet [22] allows for multi-screen interactions 

by expanding the watch to multiple touch-enabled watch 

faces arranged as a bracelet. Later, Duet [7] introduced a set 

of cross-device interaction techniques using both the touch 

screen and sensors of the watch. TouchSense [18] expanded 

the touch bandwidth of a watch screen, by augmenting the 

human finger with an IMU. Finally, Mayer et al. [24] em-

ployed the touch screen of a watch to interact with objects in 

the environment. A number of other approaches moved 

touch interaction to the bevel and band of the watch face. 

Blasko et al. [4] support bidirectional strokes on the frame of 

the watch providing tactile feedback. Oakley et al. [29] ex-

panded this idea to the side of the bevel providing high reso-

lution capacitive input. Xiao et al. [38] moved away from a 

static bevel and introduced mechanical input such as pan-

ning, twisting, tilting and clicking the bevel. Watchit [33] is 

the first approach that moves touch interaction and scroll 

gestures to the wristband. More recently, Funk et al. [8] ex-

plored using the wristband for touch-enabled text entry. Fi-

nally, Abracadabra [12] is a system that supports above the 

device interaction using a magnetic input sensor. 

Other systems expanded interaction with a smartwatch by us-

ing the arm or hand for gesture or touch input. One of the 

first explorations into smartwatches, was Gesturewrist [35], 

augmenting a watch with sensors to allow for hand gesture 

and arm posture recognition. Gesture Watch [19] augments 

a watch face with sensors for the detection of swipes gestures 

above and around the watch. Similarly, the Haptic Wrist-

watch [32] allows for detection of gestures such as covering 

the watch, turning the bevel, or swipe over the watch. Aug-

mentedForearm [30] took this concept further, stretching the 

touch display of the watch across the entire forearm. Knibbe 

et al. [20] augmented the watch with proximity and acoustic 

sensors to detect hand postures and multi-finger interactions. 

Finally, Skin buttons [21] project touch-enabled interface el-

ements on the skin. Other approaches include interaction 

with the back of a small display [3], and with small spatial 

aware displays such as Siftables [25].  

Cross-Device Interaction Techniques 

Cross-device interaction techniques have been explored in a 

wide range of other device configurations. Pick and Drop 

[34] introduced cross-device direct manipulation. Hinckley 

et al. [17] allow users to bump devices together into a single 

workspace, using synchronized gestures. Another approach 

is to stitch devices together to allow for cross-device pen in-

put [16]. Hardy et al. [11] proposed to use the back of the 

phone to select and interact with information on a large dis-

play. Similarly, PhoneTouch [36] allows users to interact 

with an interactive surface, using their phones as a personal 

device to configure or change the interaction with the sur-

face. Cross-device interaction techniques were described in 

function of proxemics in the gradual engagement pattern 

[23]. Only recently, systems explicitly used smartwatches for 

cross-device interaction. Duet [7] introduced a number of in-

teraction techniques and gestures to support distributed inter-

action between a watch and smartphone. Mayer et al. [24] 

proposed “user interfaces beaming” to interact with objects 

that are in the focus of a head-mounted display. SleeD [40] 

uses a sleeve display for interaction techniques distributed 

between the sleeve and a large interactive wall display. 

Toolkits and Programming Interfaces 

In recent years, a number of novel cross-device interface de-

sign toolkits have been proposed to mitigate the engineering 

challenges in building distributed interfaces. HydraScope 

[14] supports multi-surface interfaces by transforming and 

synchronizing existing web-based applications. Conductor 

[10] is a prototyping framework that allows for the construc-

tion of cross-device applications and provides task-, session-, 

and information-management. Panelrama [39] is a web-

based toolkit for DUIs that supports built-in UI synchroniza-

tion across devices by allowing developers to specify the 

suitability of groups of UIs (or panels) that are used by an 

algorithm to automatically distribute panels across devices. 

XDStudio [27] is a GUI builder that supports interactive de-

velopment of cross-device interfaces through the simulation 

of devices, or by actual on-device authoring.  The Tandem 

Browsing Toolkit [15] is a proxy-based online multi-display 

application toolkit that provides developers with a declara-

tive framework to define multi-device web pages. XDKinect 

[28] is a cross-device interface toolkit that uses a Kinect 

depth camera to mediate interaction between different de-

vices. The toolkit allows for proxemic-aware interaction, 

body tracking and multi-modal input. Finally, PolyChrome 

[2] is a toolkit for multi-device collaborative applications 

that provide support for concurrency management. A small 

number of commercial application programming interfaces 

(APIs), such as the Pebble [41], Sony SDK [42] or Apple’s 

WatchKit [43] are available for developers.  

These toolkits and APIs, however, are designed for existing 

hardware platforms and interfaces and provide no support for 

novel hardware designs, custom sensor mappings or watch-

specific cross-device interfaces. Although they provide 

means to synchronize UIs and events, using custom hard-

ware or designing specific gestures and postures would still 

require substantial engineering. While still possible to build 

single smartwatch applications (as seen in the related work), 

the challenges to build those prevent rapid prototyping and 

experimentation [9]. Existing commercial watch APIs re-

quire proprietary hardware and lack support for rapid proto-

typing of cross-device applications. In contrast, WatchCon-

nect provides holistic support for the entire prototyping cycle 

including (i) hardware design, abstraction and mapping, (ii) 

built-in machine learning and gesture recognition, (iii) dis-

tributed user interface and event systems, and (iv) a high 

level visual programming framework and tools. 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1248



INTERACTION SPACE 

To summarize the challenges of supporting interaction be-

tween a watch and an interactive surface, we present an over-

view on the interaction space that emerges when connecting 

the input and output space of both the watch and surface.  

Watch Input Space 

Prior work shows that the sensors built into smartwatches 

provide three interaction spaces: 

W1: On the watch interaction. A watch allows 

for direct interaction through physical contact 

with the device. Users can touch the screen of the 

watch [1,7,18,22,24], grab and interact with the 

bevel of the watch face [4,29,38] for discrete touch input, or 

interact with a touch-enabled wristband to provide continu-

ous input [8,33]. Combining these different modalities into 

one watch design provides users with a very rich input device 

that allows for combinations of screen, bevel and strap input. 

W2: Above the watch interaction. Users can 

perform gestures with the non-watch-arm in the 

three dimensional space above the watch. Alt-

hough proximity sensors and depth cameras are 

becoming increasingly popular, only Abracadabra [12] cur-

rently supports above the watch interaction. However, a 

watch equipped with distance sensors or light sensors, that 

are frequently used to support mid-air gestures such as in 

SideSight [5], can provide both continuous and discrete in-

put. This allows for a range of gestures above the watch such 

as covering the watch face, hovering and holding above the 

edges of the watch, zooming by moving the hand closer and 

away from the watch face or simply using the measured dis-

tance as discrete input. 

W3: Interaction via internal sensing. Inte-

grated watch sensors can provide data on the ac-

celeration and orientation of the device that allow 

for a wide range of both implicit and explicit ges-

tures. Implicit gestures can be used to, e.g., automatically 

turn the watch screen on or off depending on the orientation 

of the watch. As demonstrated by Duet [7], TouchSense [18] 

and GestureWrist [35], explicit gestures allow users to 

switch interaction modes or express hand posture and ges-

tures. A high granularity of input allows one to use the watch 

as a game controller or to express different input forms with 

the watch hand. Similar to other interaction spaces, the inte-

grated sensors support both continuous and discrete input. 

Interactive Surface Input Space 

When wearing a watch to interact with another touch screen 

– for example a tablet or a digital whiteboard – the setup has 

three basic input spaces (informed by [37]): 

S1: Interaction Connector Point. Because the 

watch hand can be recognized using the built-in 

sensors (as demonstrated in Duet [7]), it can be 

used to identify the user and to connect a specific user ses-

sion to the interactive display. Identifying the user behind a 

touch input, as done by Schmidt et al. [36] using a mobile 

phone, allows applications and interaction techniques to in-

corporate user specific functionality, to personalize the user 

interface or to use the input for authentication. 

S2: Interaction Collision Plane. When touch-

ing the external touch screen with the watch 

hand, a two dimensional input space is created 

that is merged with the normal touch-based input space. The 

screen can differentiate between touches performed with the 

watch hand and non-watch hand. This allows applications 

and interaction techniques to consider bimanual input in 

which specific modalities or functionality is assigned to a 

specific hand. Furthermore, the built-in sensors allow the 

screen to detect touches from the watch hand with a higher 

degree of granularity, thus allowing for the detection of, e.g., 

back of the hand, knuckle or nail touches [7]. 

S3: Interaction Volume. The orientation and ac-

celeration of the watch hand can be used for ex-

pressive input, adaptive user interfaces or even 

mid-air gestures. Furthermore, by combining three-dimen-

sional spatial interaction with touches from the non-watch 

hand, applications and interaction techniques can support ad-

vanced scenarios. Examples include navigation in three-di-

mensional applications, game input, gestural interaction, and 

gradual transitions of UI elements between devices [23]. 

Joint Output Space 

When using the watch and interactive surface, the combina-

tion of both displays creates an output space that can be used 

in three configurations: 

O1: Output on interactive display. The output 

of the interaction technique or application is 

shown only on the display of the interactive 

screen, and not on the watch. This configuration can support 

scenarios in which the watch is used purely as an input sensor 

(such as, e.g., detecting how the watch hand is touching the 

screen [7]) or when user-specific personalized user interface 

elements are shown on the display [37] based on touch input. 

O2: Output on watch display. The output of the 

interaction with the interactive display is only 

shown on the small watch display. This setup can 

be used to provide a private or contextual view  (such as, e.g., 

a peephole metaphor on a static map) of the data shown on 

the interactive surface [37]. 

O3: Output distributed across displays. The 

output or feedback of the interaction between 

both devices is distributed or shared across both 

displays [37]. This configuration allows for scenarios in 

which both the interactive display and the watch display are 

updated to reflect or visualize cross-device interactions. 

Temporal Synchronized Interaction 

User actions in this interaction space combine input and out-

put spaces of both devices. By performing temporally se-

quenced touches, postures and gestures, users can express in-

put and interact with the dual setup. Temporal interactions 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1249



provide users with a fine-grained distributed interaction 

framework. Interaction designers can combine touches, pos-

tures or gestures in any arbitrary sequence. WatchConnect is 

designed to support the prototyping of temporal interactions. 

TOOLKIT 

To mitigate the challenges in designing and prototyping 

watch-centric cross-device interaction, we present the 

WatchConnect toolkit. The major goal of the toolkit is to pro-

vide a fast event-driven platform for rapid prototyping of 

watch-centric cross-device interaction techniques and appli-

cations. The WatchConnect toolkit is composed of two parts: 

(i) a flexible and extendable hardware platform that emulates 

a smartwatch, and (ii) a software platform providing user in-

terface components and a rich set of input and output events 

and gestures, based on default sensor mappings. The toolkit 

is integrated with an existing visual user interface design tool 

(WPF Visual Studio) to support a rich set of existing UI com-

ponents and framework, and existing platforms for rapid 

hardware prototyping (Phidgets [44] and Arduino [45]). In 

this section, we provide an overview of the architecture and 

components of the toolkit.  

 

Figure 2. An overview of the WatchConnect toolkit. 

Hardware 

The WatchConnect toolkit is built around a wired prototyp-

ing watch, a smart watch emulator (Figure 2A and Figure 3) 

that is composed of a miniature display, a number of touch 

and motion sensors, and a microprocessor integrated into a 

form factor that resembles a smart watch. Using a physical 

cable, the prototyping watch is connected to the base station 

(Figure 2B) which converts and sends the data from the sen-

sors and screen over a USB cable to the development com-

puter (e.g., tablet or a large interactive surface) that runs the 

emulator software as well as the main toolkit (Figure 2C).  

The default prototyping watch (Figure 3) is built around the 

Arduino platform and contains a light sensor, two infrared 

proximity sensors, an 8 channel capacitive touch sensor, a 

six-axis MEMS motion tracker (gyro + accelerometer), an 

RGB led, a flexible force sensing potentiometer and a 2 inch 

TFT display. The hardware components are soldered on a 

PCB, which slides into the 3D printed enclosure that is 

mounted on a wristband. Because of this setup, developers 

can easily extend the design with additional sensors, recon-

figure the layout of the sensors or even redesign the existing 

watch hardware. Although the default watch uses Arduino, 

the toolkit also supports Phidgets to allow for fast plug and 

play prototyping (but somewhat bulkier components) with-

out the need to write code for the hardware emulator.  

The base station, which is connected to the development 

computer device using a USB and a VGA cable, consists of 

an Arduino microprocessor, a Phidgets interface kit, a USB 

power supply and VGA to component converter. All sensors 

are connected to either the Arduino or Phidget interface kit, 

which push the sensor readings over a serial protocol to the 

master device. The VGA converter converts the screen out-

put from the development computer into a component signal, 

which is shown on the miniature display. To allow the soft-

ware toolkit to analyze sensor data, a structured data ex-

change protocol is used which is composed of three parts: (i) 

a header that describes the sensor, (ii) the body that contains 

the sensor readings and (iii) the closing symbol that signifies 

the end of a package. 

 

Figure 3. The Arduino-based watch probe with sensors. 

Software 

The toolkit's software architecture consists of six modules 

(Figure 4): (i) an interface library that includes a runtime and 

UI framework for the watch, (ii) an input library, providing 

touch, gesture and tracking input, (iii) a hardware and (iv) 

processing layer that abstracts the hardware and machine 

learning into events and gestures, (v) a network library that 

wraps REST and web socket services around the watch 

runtime and (vi) a tools library that provides applications to 

inspect and calibrate raw sensor data. In this section, we pro-

vide more details on the different modules. 

Toolkit.Interface 

The WatchRuntime is the central object of the toolkit in 

which all other toolkit components are merged into a single 

runtime environment that is used by developers to create a 

new watch application. The runtime, that can be configured 

and setup by using the WatchConfiguration, initiates all in-

put, sensor management, processing and output into a watch 

window. When the hardware base station and watch probe 

are connected, the Window Manager of the runtime will push 

the watch window to the probe. If no hardware is connected, 

the runtime launches a native window to show the output. 

Watch applications can be designed using standard c# Win-

dows Presentation Foundation (WPF) components in Visual 

Studio and the Expression Blend UI designer.  

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1250



The only requirement for compatibility with WatchConnect 

is that watch applications are designed as user controls that 

inherit from the WatchVisual class, provided by the toolkit. 

Applications can be added and launched in the runtime by 

simply adding them as a new visual. Internally, the runtime 

manages all applications using a WatchManager that pro-

vides developers with a basic operating system-like environ-

ment to swap out watch applications. Through the 

WatchRuntime, the developer can access high level abstract 

gesture, touch and tracking events, which can easily be inte-

grated into the interface design. Although we expect that 

most developers' needs reside in this high level abstraction 

space, we will later show how developers can make use of 

all lower level layers, right down to the hardware.  

 

Figure 4: The architecture of the WatchConnect software. 

Toolkit.Input 

The input module provides three built-in input managers: a 

touch manager, gesture manager and tracker manager. First, 

the TouchManager encapsulates all “on the device touch sen-

sors” - such as the SlideTouch device for the wristband, and 

a BevelTouch device - and presents the developer with high-

level events including TouchDown, TouchUp and Touch-

DoubleTap events but also more complex and specialized 

events such as, e.g., SliderDown, SliderUp or BevelMulti-

Grab. Second, the GestureManager encapsulates “above the 

device sensors” –  such as a light sensor and infrared prox-

imity sensors, and tracks the internal state of the sensors us-

ing configurable thresholds and gesture detection algorithms 

to detect higher level gestures and postures. The abstract ges-

ture events accessible in this manager include SwipeLeft, 

SwipeRight, HoldLeft, HoldRight and Cover. Finally, the 

TrackerManager encapsulates all the “interaction via inter-

nal sensors” such as the accelerometer, gyroscope and mag-

netometer. Similarly to the other managers, the TrackerMan-

ager monitors the internal state of the sensors and presents 

the developer with abstract high-level gestures or postures. 

These include an abstract IMU representation that includes 

the raw acceleration data, the world acceleration data, the an-

gular motion, magnetic data and the yaw, pitch and roll. Us-

ing machine learning methods (defined in the Toolkit.Pro-

cessing module), the manager can also detect gestures and 

postures that are defined by the developer who can provide 

training data and labels to the manager through the Watch-

Configuration. This data can be collected using the data cap-

ture tool (provided in the Toolkit.Tools module). The gesture 

detection events provide users with the detected label as well 

as the probability and score of the detection. All three man-

agers provide access to raw fused sensor data and can easily 

be extended by developers who can add new sensors, create 

new events or even add new managers (e.g., for “on the skin 

sensors”). Finally, each manager has a built-in simulator that 

allows developers to trigger events using simulated input 

such as a 3D controller or simulated data.  

Toolkit.Hardware 

The toolkit operates using an abstract HardwarePlatform, 

which can be an Arduino, Phidget or any other hardware plat-

form that supports the WatchConnect protocol. The hardware 

module provides low level plug and play serial port manage-

ment and allows managers to hook into the serial data loop 

to filter for specific data packets. Individual sensors are cre-

ated and initiated in the managers, but use the packet defini-

tion to internally update their values. Although the toolkit 

supports a wide variety in sensors, there are four high-level 

abstract sensors: touch sensor, multi-touch sensor, proximity 

sensors and an IMU. These can represent a wide range of low 

level sensors ranging from flexible linear force resistant po-

tentiometers to multi-channel capacitive sensors, various 

types of IMUs, and light and distance sensors. Although the 

managers provide high level events, developers can add cus-

tom lower level events directly to the sensor in order to listen 

or monitor changes in the internal values. Every sensor in-

stance has an internal dynamic event mechanism that allows 

programmers to define events with a custom condition, 

which is checked and triggered from the internal value up-

date function. This is achieved by allowing developers to in-

ject methods into the execution body of the sensor. Finally, 

if new sensors are added to the setup, developers can add a 

new and custom hardware packet listener to the managers. 

This packet listener can be included in an existing manager, 

a newly defined manager or be used directly inside the exist-

ing watch application setup.  

Toolkit.Processing 

To support gesture, posture and pattern recognition, the 

Toolkit.Processing module provides a number of machine 

learning algorithms and data structures, that are built using 

the Accord framework and are integrated into the toolkit. The 

processing module includes a dynamic decision tree genera-

tor and a dynamic time warping (DTW) template engine that 

both use the training data and labels provided in the Watch-

Configuration. The toolkit will use the training data to gen-

erate internal structures that are used by the managers to 

match recorded templates (e.g., for “above the device” prox-

imity sensors) or monitor for gestures inside a time window. 

Toolkit.Network 

To allow multiple watches (connected to the same or multi-

ple master computer devices) to interact with each other, the 

toolkit includes a network module that provides a websocket 

service that wraps the WatchRuntime and exposes all events 

over a real-time data connection. The module also includes 

Bonjour Discovery services to allow for zero-configuration 

networking support and broadcasting of watch addresses. It 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1251



also provides a number of abstractions to distribute and share 

descriptions of the watch applications. The network module 

distributes watch data, meaning that each watch renders the 

data locally if new data is received from other watches. 

Toolkit.Tools 

To support developers in debugging and using the software 

framework, the toolkit includes a number of tools. First, the 

InputVisualizer provides developers with a number of visu-

alizations that present the raw sensor data and allow for the 

testing of the machine learning and pattern matching data. 

Second, the DataRecorder provides a visual interface to rec-

ord sensor data. Developers can select the data, sample rate 

and file location of the captured data. The recorder also al-

lows developers to label the data as it is being recorded.  

CROSS-DEVICE INTERACTION TECHNIQUES 

To demonstrate the functionality and test the feasibility and 

applicability of the toolkit for the design of cross-device ap-

plications, we present five different interaction techniques 

implemented in realistic applications. The implementations 

of all applications and techniques use only the standard 

toolkit components, events and machine learning of the 

toolkit and do not include any specialized code or external 

tools.  Table 1 provides an overview of the applications (with 

lines of code), and how the applications utilize the input and 

output of the interaction space. All applications were de-

signed using a drag and drop editor for all UI elements, with 

minimal background code to link the UI to the underlying 

toolkit through high level objects and events. Although all 

applications are demonstrated on a laptop with interactive 

touchscreen, these techniques and applications are also usa-

ble and suitable for tablets and large horizontal or vertical 

surfaces. The purpose of these example applications is to 

demonstrate the types of advanced applications that can be 

constructed using only default components of the toolkit. 

Although these applications can be built using other methods 

(as demonstrated in [7,24,40]), these include custom hard-

ware design, machine learning and other advanced computer 

science skills that many interaction designers do not have. 

Application 1: Data Transfer 

One of the core problems in multi-device information spaces 

is the fast, intuitive and easy transfer of files and resources 

across different devices [23]. A body of previous work (e.g., 

[23,34,36]) has explored how information can be seamlessly 

transferred across devices. These techniques can be ex-

panded to smartwatches that have the potential to become 

wearable mediating storage devices that allow users to easily 

move their personal information to any display or device on 

hand. The touch and swipe technique allows users to connect 

their smartwatch to a display and use a mid-air swipe gesture 

to send information to the display. Users first touch the dis-

play with the watch hand to create a connection between the 

two devices. After the watch hand touch is recognized and 

the user touches an empty space, the user interface reveals a 

colored rectangle that is filled up over a period of two sec-

onds. The color represents the active information on the  

  W
1
: 

T
o
u

c
h

 

W
2
: 

A
b

o
v
e
 

W
3
: 

3
D

 M
o
v
e
 

S
1
: 

Id
e
n

ti
fy

 u
se

r
 

S
2
: 

M
u

lt
i 

to
u

c
h

 

S
3
: 

3
D

 S
p

a
c
e
 

O
1
: 

W
 f

e
e
d

b
a
c
k

 

O
2
: 

S
 f

e
e
d

b
a
c
k

 

O
3
: 

D
is

tr
. 

U
I 

 Application  Lines of Code Watch Screen  Output 

Data transfer  164          
Privacy  50          
Navigation  98          
Reading  132          
UI distribution  47          

Table 1. Five example applications with their lines of code and 

how they use the interaction space. 

watch, and the filling of the rectangle visualizes the time win-

dow in which the user can perform gestures to move the re-

source to the display. If the time window passes, the system 

dismisses the watch connection and treats the touch as a nor-

mal touch input. If the user performs a left to right swipe dur-

ing the time window, the resource on the watch is sent to the 

display and shown as a touch-enabled resource (Figure 5A-

B). To select which resources to send to the display, the user 

can use the wristband touch sensor to scroll between the dif-

ferent resources stored on the watch.  

 

Figure 5. Users can perform gestures to move information be-

tween the display and the watch (A-B). The UI reveals part of 

the resource in the form of a color and shape (C-D). 

If the user touches an existing resource on the display, the 

watch will update the UI to reveal that the watch can receive 

the resource, by showing a colored border on the right side 

of the watch (Figure 5 C-D). If the user performs a right-to-

left swipe during the reveal time window, the resource is re-

moved from the display and sent to the watch. When inter-

acting with the resources on the surface, the UI can distin-

guish between left hand and right hand touches. As a conse-

quence the UI only offers time windows to send information 

between devices, if a touch is linked to the watch hand. 

The application leverages the entire software stack of the 

WatchConnect toolkit and was built in only 164 lines of code 

in a single class. It uses the built-in gesture recognizer to de-

tect the watch hand. The UI elements are simply relocated 

between the watch runtime and the full screen application. 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1252



The different type of touch inputs (watch hand, non-watch 

hand) are channeled through events and coupled directly to 

the UI. The input layer on the watch automatically captures 

touch input on the bevel and updates the UI on the watch. 

 

Figure 6. Users log in with the non-watch hand (A) or use the 

index finger or flat hand to show the password on the watch or 

screen (B-C). Users reset the password using the knuckle (D). 

Application 2: Privacy and Password Access 

The next technique facilitates access to highly private data 

such as passwords, bank account data or personal email. The 

pose and touch interaction technique provides users with a 

rich set of interactive capabilities to enter or correct a pass-

word field. Similar to the previous technique, the watch is 

paired to the display by touching the screen. However, in this 

case, the screen will monitor the posture of the hand at the 

moment of touching the screen. This means that the screen 

cannot only detect if the watch hand is touching the screen 

but also with which part of the hand (similarly to [7,13]). 

Touching the button with the non-watch hand validates the 

password and provides appropriate feedback (Figure 6A). 

The user can reveal the content of the hidden password field 

on the watch display, by touching the button with the index 

finger of the watch hand (Figure 6B), or on the touchscreen, 

by touching the button with the flat watch hand (Figure 6C). 

Users can reset the password field by touching the button 

with the knuckle of the watch hand (Figure 6D). 

The application uses the gesture recognizer to distinguish be-

tween four different hand postures. Each posture is pushed 

to the UI as a different event, allowing the UI code to simply 

switch states and push the correct UI to the watch runtime or 

full screen application. This example was built in 50 lines of 

code and allows developers to focus only on the UI. 

Application 3: Supporting Map Navigation 

Interacting with maps often requires users to modify the 

view, find a location, or start route planning. Most maps cur-

rently provide little support for using additional devices to 

expand or distribute the view on the map. The touch and push 

interaction technique allows users to modify a custom sec-

ondary view on the display of the smartwatch, while using 

the interactive touchscreen for an overview of the general en-

vironment they want to explore. After touching the screen 

with the watch hand, the maps on both displays are synchro-

nized (Figure 7A). The watch map has a default zoom level 

that is twice that of the main map. This allows users to 

quickly glance at the watch for more details as they explore 

the map. By touching the bevel of the watch, users can zoom 

in and out of the customized view, or toggle the watch map 

between a satellite view or the traditional map view (Figure 

7C). When users interact with the map on the touchscreen, 

the map on the watch follows the movement, thus keeping 

both views synchronized. When users explore the custom-

ized view on the watch in more detail, they can synchronize 

the main map to that of the watch by using the touch and 

swipe gestures (Figure 7D). Finally, for selecting small tar-

gets, such as placing pushpins or route marks, the display of 

the watch can be used as a scope to zoom and find the exact 

location (Figure 7B). The user can touch the screen and press 

the left bevel of the watch to mark the point on the main map. 

 

Figure 7. The watch screen shows a mini map (A), and allows 

users to zoom (B), change view (C) or mark locations (D). 

This example was built in 98 lines of code, and utilizes the 

input layer to channel input from above and on the watch 

probe to the main interface on the surface. The application 

uses the temporal events to synchronize views between the 

watch runtime and main application, but integrates with a 

standard Bing maps component available in WPF / C#. 

Application 4: Support Active Reading Applications 

With the increasing availability of touch-enabled devices, ac-

tive reading applications integrate new forms of touch-based 

interaction. The gesture and touch interaction techniques 

support a range of input techniques designed to create a fluid 

active reading application. In this application, the non-watch 

hand is used for passive browsing and reading, while the 

watch hand is used for active editing. Users can simply scroll 

through the text by performing on-screen swipe gestures us-

ing the non-watch hand (Figure 8A). By touching the bevel 

of the watch, users can browse through the menu items, thus, 

changing the selected option, which determines the effect of 

touching the screen with the watch hand (Figure 8B). The 

finger of the watch hand thus becomes a reconfigurable in-

strument that can be used for basic annotation with a black 

pen (Figure 8C), painting with a translucent brush (Figure 

8D), marking text with a yellow marker (seen in Figure 8E) 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1253



or as an eraser. Users can use the knuckle of the watch hand 

to select and copy text to a clipboard (Figure 8F). 

This example was built in 132 lines of code, and again lev-

erages the ML and processing features of the toolkit to aug-

ment a basic e-reader with advanced gestural interactions. 

The recognizer of the toolkit channels the recognized labels 

through events to the UI, which can simply be updated. Sim-

ilar to all other examples, the UI itself is designed using drag 

and drop WPF C# components available in the Visual Studio 

IDE. WatchConnect simply connects the gestures and sen-

sors of the watch to the already existing UI components. 

 

Figure 8. Users can browse text with the non-watch hand (A), 

configure the watch hand (B) into a pen (C), pencil (D), 

markers (E) or use the knuckle to select text (F). 

Application 5: User Interface Beaming 

One important research challenge in cross-device infor-

mation spaces is how user interface elements can be seam-

lessly moved between different connected devices. Prior 

work has proposed the notion of “user interface beaming” 

[24] for mixed reality environments, or the flashlight meta-

phor [6] for transferring user interface elements from one de-

vice to another. Smartwatches can play a mediating role in 

defining, exchanging and using interface components or 

data. In this touch and beam technique, a UI element is ini-

tially only shown on a watch. After connecting the watch to 

an interactive surface by touching the display, the user inter-

face is sent to that bigger display, to provide a bigger space 

for the output and utilize the potentially more advanced fea-

tures provided by that device. E.g., an incoming phone call 

on a smart watch (Figure 9A) is simply transferred to a big-

ger display with better sound and camera by touching the dis-

play and connecting the watch. The hand acts like a flashlight 

that beams the interface on a larger canvas  (Figure 9B), thus, 

increasing the interaction space for the user interfaces. 

This example was built with 47 lines of code and uses the 

layout engine of the watch runtime to relay UI components 

based on synchronized event triggers. Designers do not need 

to define a multi-device context but can simply rely on the 

toolkit to move UI elements between the watch runtime and 

the main surface application.  

 

Figure 9. UI elements (A) can be beamed to the surface (B). 

DISCUSSION 

Designing, prototyping and testing cross-device interaction 

techniques with smartwatches is a complex task. To mitigate 

these challenges, we introduced WatchConnect, which uses 

a watch prototyping emulator to provide developers with a 

platform for the rapid design and prototyping of cross-device 

interaction techniques. Developers can create their own sen-

sor and hardware configurations and use the software frame-

work for easy and fast access to those hardware designs. In 

this section, we thematically compare WatchConnect to other 

approaches using Olsen’s framework [31]. 

Problem Not Previously Solved  

Commercial smartwatch APIs (such as [41,42,43]) provide 

limited support for existing hardware and single screen user 

interfaces. These APIs are designed to provide a path of least 

resistance towards specific UIs, but are not designed to ex-

plore novel interaction techniques and alternative designs. In 

contrast, WatchConnect allows designers to experiment, 

build and evaluate a range of different hardware designs, in-

teraction techniques and gestural cross-device applications 

without any knowledge on distributed computing,  hardware 

development and interfacing, data processing and sensor fu-

sion, machine learning and networked setups. With the use 

of smartwatches and other mobile and wearable devices, 

providing tool support for designing UIs across an ecology 

of devices, becomes increasingly important and relevant.  

Earlier cross-device UI toolkits – such as HydraScope [14], 

Conductor [10], or XDStudio [27] – lowered the threshold 

for developing applications spanning the ecology of devices. 

WatchConnect builds on top of these toolkits, and extends 

this work with a specialized support and focus on smartwatch 

specific interaction techniques, support for diverse hardware 

platforms, custom sensor mappings or creation of watch-cen-

tric gestural interactions. The toolkit also draws from previ-

ous work in watch-centric cross-device applications (such as 

Duet [7], UI Beaming [24] and SleeD [40]) to generalize 

these approaches and allow for rapid prototyping of complex 

cross-device interaction techniques using different display 

sizes and novel sensor input.  

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1254



Reduce Solution Viscosity 

Compared to other methods to develop watch-centric cross-

device applications, WatchConnect dramatically reduces de-

velopment viscosity [31] by providing a flexible architecture 

that allows for expressive leverage. The example applica-

tions demonstrate the range of scenarios that are supported 

by the toolkit. By moving all complex processes into high-

level objects and events, designers can create complex ges-

tural interactions with little overhead. However, designers 

with expert skills can leverage the toolkit and access, modify 

and create complex low level sensor mappings, custom hard-

ware protocols and advanced machine learning approaches. 

Furthermore, the layered architecture allows for potential re-

placement of the UI layer with another existing cross-device 

toolkit (such as HydraScope [14], Conductor [10], or XDStu-

dio [27]) to leverage existing multi-device features, while 

still using the watch-centric features of WatchConnect. 

Empowering New Design Participants  

Without adequate toolkit support, exploring watch-centric 

cross-device systems remained the domain of designers with 

highly specialized computer science skills. This is reflected 

in the very few watch-centric cross-device systems so far, 

and the number of simulation techniques used (e.g., using 

smartphones as watch proxies or relying on Wizard of Oz 

approaches). WatchConnect focuses in particular on making 

this emerging technology accessible to new, non-expert pro-

grammers. Complex applications and interaction techniques 

that support gestures, postures and multi-device synchroni-

zation can be designed in a short period of time without in-

depth knowledge of distributed computing or machine learn-

ing. The toolkit lowers the threshold [26] for beginning the 

exploration of cross-device smartwatch applications, and it 

allows designers to focus their efforts on creative design so-

lutions [9] for the actual cross-device user experience and in-

terface design. In particular, the software abstracts sensor in-

put from above, on and in the watch into abstract high-level 

events and objects for easier configuration and use. While an 

in-depth study of developers applying the toolkit in practice 

is part of our future work, we see WatchConnect as a funda-

mental step towards rapid iterative smartwatch prototyping, 

facilitating the exploration of novel cross-device behaviors.  

Power in Combination  

WatchConnect combines distributed UIs, machine learning, 

hardware management, data processing and simulation into 

one toolkit. Each building block is highly decoupled, allow-

ing for the design of new layers or the inclusion of other ap-

proaches. The basic building blocks of WatchConnect can be 

used in complex temporal and spatial sequences that provide 

a power by combination [31].  WatchConnect integrates with 

C# / WPF to support a major and stable development plat-

form that provides designer-level abstractions and a flexible 

and broad UI framework with numerous tools and libraries 

[9]. Once the design of the interaction technique or applica-

tion transcends the prototyping phase and is verified and val-

idated, designers can move the design to more permanent 

platforms, using standard SDKs and commercial hardware.  

Generality 

Using five example applications that include both novel and 

replications of state of the art interaction techniques, we 

demonstrate the versatility and generality of the toolkit, as 

well as the expressivity of the building block components 

[31]. The fundamental limitation but also strength of this 

toolkit is that it is based around a watch prototyping emulator 

and not a real – and wireless – watch. We argue that for the 

rapid prototyping and creative stage of the design process 

this is an acceptable trade-off. It brings the advantage that 

developers are not bound by existing hardware limitations or 

existing device designs, but can design and use their own 

setup to develop compelling and forward looking cross-de-

vice interaction techniques. We expect that in the near future 

more accessible smartwatch hardware platforms will emerge 

and future versions of the toolkit could support some of these 

smartwatches for prototyping. Furthermore, an in-depth test-

ing of the toolkit and its expressive power with developers 

can provide us further insights into the prototyping process 

with smartwatch cross-device applications. 

CONCLUSION 

WatchConnect allows for rapid prototyping of smartwatch-

centric cross-device applications and interaction techniques, 

using custom hardware designs and a software framework 

that removes complex machine learning, sensor fusion and 

hardware management into high level objects and events that 

are integrated with an existing drag and drop UI framework. 

The toolkit reduces development complexity and lowers the 

threshold for developers to design for complex device ecol-

ogies using a smartwatch as mediating instrument. The 

toolkit allows for future explorations of a wide range of novel 

multi-device interaction techniques, hardware designs and 

collaborative multi-surface environments. Future work in-

cludes integrating WatchConnect with other cross-device 

toolkits and smartwatch platforms to support existing frame-

works and a wider set of setups and development platforms. 

ACKNOWLEDGMENTS  

This work was supported by the EU Marie Curie Network 

iCareNet under grant number 264738 and ICRI Cities. 

Thanks to Michael Nebeling, Sarah Gallacher and our anon-

ymous reviewers for their feedback and helpful suggestions 

for the improvement of the manuscript. 

REFERENCES 

1. Ashbrook, D., Lyons, K., and Starner, T. An 

investigation into round touchscreen wristwatch 

interaction. Proc. of ACM MobileHCI’08. 

2. Badam, S.K. and Elmqvist, N. PolyChrome: A Cross-

Device Framework for Collaborative Web Visualization. 

Proc. of  ACM ITS’14. 

3. Baudisch, P. and Chu, G. Back-of-device interaction 

allows creating very small touch devices. Proc. of ACM 

CHI’09. 

4. Blasko, G. and Feiner, S. An interaction system for 

watch computers using tactile guidance and bidirectional 

segmented strokes. Proc. of IEEE ISWC 2004. 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1255



5. Butler, A., Izadi, S., and Hodges, S. SideSight: multi-

touch interaction around small devices. Proc. of ACM 

UIST’08. 

6. Cao, X. and Balakrishnan, R. Interacting with 

dynamically defined information spaces using a 

handheld projector and a pen. Proc. of ACM UIST’09. 

7. Chen, X., Grossman, T., Wigdor, D.J., and Fitzmaurice, 

G. Duet: exploring joint interactions on a smart phone 

and a smart watch. Proc. of ACM CHI’14. 

8. Funk, M., Sahami, A., Henze, N., and Schmidt, A. 

Using a touch-sensitive wristband for text entry on smart 

watches. ACM CHI’14 EA. 

9. Greenberg, S. Toolkits and interface creativity. 

Multimedia Tools and Applications, (2007). 

10. Hamilton, P. and Wigdor, D.J. Conductor: enabling and 

understanding cross-device interaction. Proc. of ACM 

CHI’14. 

11. Hardy, R. and Rukzio, E. Touch & interact: touch-based 

interaction of mobile phones with displays. Proc. of 

ACM MobileHCI’08. 

12. Harrison, C. and Hudson, S.E. Abracadabra: wireless, 

high-precision, and unpowered finger input for very 

small mobile devices. Proc. of ACM UIST’09. 

13. Harrison, C., Schwarz, J., and Hudson, S.E. TapSense: 

enhancing finger interaction on touch surfaces. Proc. of 

ACM UIST’11. 

14. Hartmann, B., Beaudouin-Lafon, M., and Mackay, W.E. 

HydraScope: creating multi-surface meta-applications 

through view synchronization and input multiplexing. 

Proc. of ACM PerDis’13. 

15. Heikkinen, T., Goncalves, J., Kostakos, V., Elhart, I., 

and Ojala, T. Tandem Browsing Toolkit: Distributed 

Multi-Display Interfaces with Web Technologies. Proc. 

of ACM PerDis’14. 

16. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, 

P., and Smith, M. Stitching: pen gestures that span 

multiple displays. Proc. of ACM AVI’04. 

17. Hinckley, K. Synchronous gestures for multiple persons 

and computers. Proc. of ACM UIST’03. 

18. Huang, D.-Y., Tsai, M.-C., Tung, Y.-C., et al. 

TouchSense: expanding touchscreen input vocabulary 

using different areas of users’ finger pads. Proc. of ACM 

CHI’14. 

19. Kim, J., He, J., Lyons, K., and Starner, T. The gesture 

watch: A wireless contact-free gesture based wrist 

interface. Proc. of IEEE ISWC’07,. 

20. Knibbe, J., Martinez Plasencia, D., Bainbridge, C., et al. 

Extending interaction for smart watches: enabling 

bimanual around device control. ACM CHI’14 EA. 

21. Laput, G., Xiao, R., Chen, X., Hudson, S.E., and 

Harrison, C. Skin buttons: cheap, small, low-powered 

and clickable fixed-icon laser projectors. Proc. of ACM 

UIST’14. 

22. Lyons, K., Nguyen, D., Ashbrook, D., and White, S. 

Facet: a multi-segment wrist worn system. Proc. of 

ACM UIST’12. 

23. Marquardt, N., Ballendat, T., Boring, S., Greenberg, S., 

and Hinckley, K. Gradual engagement: facilitating 

information exchange between digital devices as a 

function of proximity. Proc. of ACM ITS’12. 

24. Mayer, S. and Sörös, G. User Interface Beaming - 

Seamless Interaction with Smart Things using Personal 

Wearable Computers". Proc. of IEEE BSN 2014. 

25. Merrill, D., Kalanithi, J., and Maes, P. Siftables: towards 

sensor network user interfaces. Proc. of ACM TEI’07. 

26. Myers, B., Hudson, S.E., and Pausch, R. Past, present, 

and future of user interface software tools. TOCHI '00. 

27. Nebeling, M., Mintsi, T., Husmann, M., and Norrie, M. 

Interactive development of cross-device user interfaces. 

Proc. of ACM CHI’14. 

28. Nebeling, M., Teunissen, E., Husmann, M., and Norrie, 

M.C. XDKinect: development framework for cross-

device interaction using kinect. Proc. of ACM EICS’14. 

29. Oakley, I. and Lee, D. Interaction on the edge: offset 

sensing for small devices. Proc. of ACM CHI’14. 

30. Olberding, S., Yeo, K.P., Nanayakkara, S., and Steimle, 

J. AugmentedForearm: exploring the design space of a 

display-enhanced forearm. Proc. of ACM AH’13. 

31. Olsen Jr, D.R. Evaluating user interface systems 

research. Proc. of ACM UIST’07. 

32. Pasquero, J., Stobbe, S.J., and Stonehouse, N. A haptic 

wristwatch for eyes-free interactions. Proc. of ACM 

CHI’11. 

33. Perrault, S.T., Lecolinet, E., Eagan, J., and Guiard, Y. 

Watchit: simple gestures and eyes-free interaction for 

wristwatches and bracelets. Proc. of ACM CHI’13. 

34. Rekimoto, J. Pick-and-drop: a direct manipulation 

technique for multiple computer environments. Proc. of 

ACM UIST’97. 

35. Rekimoto, J. Gesturewrist and gesturepad: Unobtrusive 

wearable interaction devices. Proc. of IEEE ISWC’01. 

36. Schmidt, D., Chehimi, F., Rukzio, E., and Gellersen, H. 

PhoneTouch: a technique for direct phone interaction on 

surfaces. Proc. of ACM UIST’10. 

37. Schmidt, D., Seifert, J., Rukzio, E., and Gellersen, H. A 

cross-device interaction style for mobiles and surfaces. 

Proc. of ACM DIS’12. 

38. Xiao, R., Laput, G., and Harrison, C. Expanding the 

input expressivity of smartwatches with mechanical pan, 

twist, tilt and click. Proc. of ACM CHI’14. 

39. Yang, J. and Wigdor, D. Panelrama: enabling easy 

specification of cross-device web applications. Proc. of 

ACM CHI’14. 

40. Von Zadow, U., Büschel, W., Langner, R., and 

Dachselt, Raimund. SleeD: Using a Sleeve Display to 

Interact with Touch-sensitive Display Walls. Proc. of 

ACM ITS’14. 

41. Pebble. http://developer.getpebble.com. 

42. Sony Watch. http://developer.sony.com/. 

43. Apple Watch. http://apple.com/watch/. 

44. Phidgets. http://phidgets.com. 

45. Arduino. http://arduino.cc. 

Smartwatch Interaction CHI 2015, Crossings, Seoul, Korea

1256




